tools
AI for Developers: Essential Tools and Resources
Image: AI-generated illustration for AI for Developers

AI for Developers: Essential Tools and Resources

Neural Intelligence

Neural Intelligence

5 min read

The ultimate guide to AI tools for developers—from coding assistants to APIs to frameworks for building AI-powered applications.

AI Tools Every Developer Should Know

AI is transforming software development. From intelligent code completion to automated testing to building AI-powered features, here's your comprehensive guide to AI tools for developers.

Coding Assistants

Comparison

ToolBest ForPricing
GitHub CopilotVS Code users$10-19/mo
CursorAI-native editing$20/mo
CodeiumFree optionFree-$15/mo
Amazon QAWS developersFree-$19/mo
TabninePrivacy focus$12/mo

What They Do

CapabilityDescription
Code completionSuggest next lines
Code generationCreate from prompts
Code explanationUnderstand existing code
RefactoringImprove structure
Bug detectionFind issues
DocumentationGenerate docs

APIs and Models

LLM APIs

ProviderModelsPricing
OpenAIGPT-4, GPT-4o, o1$0.15-60/1M tokens
AnthropicClaude 3, 3.5$0.25-75/1M tokens
GoogleGemini 1.5, 2$0.07-21/1M tokens
MistralMistral, Mixtral$0.04-6/1M tokens
CohereCommand R+$0.15-15/1M tokens

Quick Start: OpenAI

from openai import OpenAI

client = OpenAI(api_key="...")

response = client.chat.completions.create(
    model="gpt-4o",
    messages=[
        {"role": "system", "content": "You are a helpful assistant."},
        {"role": "user", "content": "Hello!"}
    ]
)

print(response.choices[0].message.content)

Quick Start: Anthropic

import anthropic

client = anthropic.Anthropic(api_key="...")

response = client.messages.create(
    model="claude-3-5-sonnet-20241022",
    max_tokens=1024,
    messages=[
        {"role": "user", "content": "Hello!"}
    ]
)

print(response.content[0].text)

Frameworks

LLM Orchestration

FrameworkBest ForLanguage
LangChainComplex chainsPython, JS
LlamaIndexRAG applicationsPython
Semantic Kernel.NET ecosystemC#, Python
HaystackSearch + NLPPython

LangChain Example

from langchain_openai import ChatOpenAI
from langchain_core.prompts import ChatPromptTemplate

llm = ChatOpenAI(model="gpt-4o")
prompt = ChatPromptTemplate.from_messages([
    ("system", "You are a helpful assistant."),
    ("human", "{input}")
])
chain = prompt | llm

response = chain.invoke({"input": "Hello!"})
print(response.content)

AI Web Development

FrameworkUse Case
Vercel AI SDKNext.js AI apps
FastAPIAI API backends
GradioML demos
StreamlitData apps
ChainlitChatbot UIs

Vector Databases

Quick Comparison

DatabaseTypeBest For
PineconeManagedProduction
WeaviateOpen sourceFlexibility
ChromaLocalPrototyping
QdrantOpen sourcePerformance
pgvectorPostgresExisting Postgres

Basic RAG Pattern

from langchain_openai import OpenAIEmbeddings
from langchain_community.vectorstores import Chroma

# Create embeddings and store
embeddings = OpenAIEmbeddings()
vectorstore = Chroma.from_documents(docs, embeddings)

# Query
results = vectorstore.similarity_search("my question", k=5)

Infrastructure

Deployment Options

PlatformBest ForPricing
VercelAI web appsFree-paid
RailwayBackend servicesUsage-based
ModalServerless AIUsage-based
ReplicateModel hostingUsage-based
Hugging FaceModel inferenceFree-paid

GPU Compute

ProviderGPUsUse Case
AWSA10, A100Enterprise
GCPT4, A100, TPUsEnterprise
AzureA10, A100Enterprise
Lambda LabsA100, H100Training
Vast.aiVariousBudget

Observability

Debugging and Monitoring

ToolFocus
LangSmithLangChain debugging
Weights & BiasesML experiments
ArizeProduction monitoring
HeliconeLLM observability
PortkeyLLM gateway

Open Source Models

Running Locally

ToolPurpose
OllamaEasy local LLMs
llama.cppEfficient inference
vLLMProduction serving
text-generation-webuiGUI interface

Best Open Models

ModelUse Case
Llama 3.1 70BGeneral
Mistral 7BEfficient
CodeLlamaCoding
Phi-3Mobile/edge

Testing and Evaluation

Tools

ToolFocus
PromptfooPrompt testing
RAGASRAG evaluation
DeepEvalLLM unit testing
LangSmithTrace-based eval

Basic Evaluation Pattern

from promptfoo import evaluate

results = evaluate(
    prompts=["Translate: {text}"],
    providers=["openai:gpt-4o", "anthropic:claude-3"],
    tests=[
        {"vars": {"text": "Hello"}, "assert": {"type": "contains", "value": "Bonjour"}}
    ]
)

Best Practices

API Usage

PracticeDescription
Rate limitingHandle 429 errors
CachingCache common responses
FallbacksMultiple providers
Cost trackingMonitor usage
Error handlingGraceful degradation

Security

PracticeImplementation
API key securityEnvironment variables
Input validationSanitize user input
Output filteringCheck for harmful content
Rate limitingPrevent abuse

Performance

OptimizationImpact
StreamingBetter UX
Batch requestsHigher throughput
Model selectionCost/quality tradeoff
CachingReduce calls

Building AI Features

Checklist

  • Define the problem clearly
  • Choose the right model/API
  • Handle errors gracefully
  • Implement streaming
  • Monitor usage and costs
  • Test edge cases
  • Get user feedback
  • Iterate and improve

"The best AI features solve real problems, handle failure gracefully, and improve over time. Start simple, ship fast, and iterate based on real usage."

Neural Intelligence

Written By

Neural Intelligence

AI Intelligence Analyst at NeuralTimes.

Next Story

AI Education in India: From IITs to Skill Development Programs

India is ramping up AI education at all levels, from elite IIT programs to mass skill development initiatives, aiming to create a workforce ready for the AI economy.