The ultimate guide to AI tools for developers—from coding assistants to APIs to frameworks for building AI-powered applications.
AI Tools Every Developer Should Know
AI is transforming software development. From intelligent code completion to automated testing to building AI-powered features, here's your comprehensive guide to AI tools for developers.
Coding Assistants
Comparison
| Tool | Best For | Pricing |
|---|
| GitHub Copilot | VS Code users | $10-19/mo |
| Cursor | AI-native editing | $20/mo |
| Codeium | Free option | Free-$15/mo |
| Amazon Q | AWS developers | Free-$19/mo |
| Tabnine | Privacy focus | $12/mo |
What They Do
| Capability | Description |
|---|
| Code completion | Suggest next lines |
| Code generation | Create from prompts |
| Code explanation | Understand existing code |
| Refactoring | Improve structure |
| Bug detection | Find issues |
| Documentation | Generate docs |
APIs and Models
LLM APIs
| Provider | Models | Pricing |
|---|
| OpenAI | GPT-4, GPT-4o, o1 | $0.15-60/1M tokens |
| Anthropic | Claude 3, 3.5 | $0.25-75/1M tokens |
| Google | Gemini 1.5, 2 | $0.07-21/1M tokens |
| Mistral | Mistral, Mixtral | $0.04-6/1M tokens |
| Cohere | Command R+ | $0.15-15/1M tokens |
Quick Start: OpenAI
from openai import OpenAI
client = OpenAI(api_key="...")
response = client.chat.completions.create(
model="gpt-4o",
messages=[
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "Hello!"}
]
)
print(response.choices[0].message.content)
Quick Start: Anthropic
import anthropic
client = anthropic.Anthropic(api_key="...")
response = client.messages.create(
model="claude-3-5-sonnet-20241022",
max_tokens=1024,
messages=[
{"role": "user", "content": "Hello!"}
]
)
print(response.content[0].text)
Frameworks
LLM Orchestration
| Framework | Best For | Language |
|---|
| LangChain | Complex chains | Python, JS |
| LlamaIndex | RAG applications | Python |
| Semantic Kernel | .NET ecosystem | C#, Python |
| Haystack | Search + NLP | Python |
LangChain Example
from langchain_openai import ChatOpenAI
from langchain_core.prompts import ChatPromptTemplate
llm = ChatOpenAI(model="gpt-4o")
prompt = ChatPromptTemplate.from_messages([
("system", "You are a helpful assistant."),
("human", "{input}")
])
chain = prompt | llm
response = chain.invoke({"input": "Hello!"})
print(response.content)
AI Web Development
| Framework | Use Case |
|---|
| Vercel AI SDK | Next.js AI apps |
| FastAPI | AI API backends |
| Gradio | ML demos |
| Streamlit | Data apps |
| Chainlit | Chatbot UIs |
Vector Databases
Quick Comparison
| Database | Type | Best For |
|---|
| Pinecone | Managed | Production |
| Weaviate | Open source | Flexibility |
| Chroma | Local | Prototyping |
| Qdrant | Open source | Performance |
| pgvector | Postgres | Existing Postgres |
Basic RAG Pattern
from langchain_openai import OpenAIEmbeddings
from langchain_community.vectorstores import Chroma
# Create embeddings and store
embeddings = OpenAIEmbeddings()
vectorstore = Chroma.from_documents(docs, embeddings)
# Query
results = vectorstore.similarity_search("my question", k=5)
Infrastructure
Deployment Options
| Platform | Best For | Pricing |
|---|
| Vercel | AI web apps | Free-paid |
| Railway | Backend services | Usage-based |
| Modal | Serverless AI | Usage-based |
| Replicate | Model hosting | Usage-based |
| Hugging Face | Model inference | Free-paid |
GPU Compute
| Provider | GPUs | Use Case |
|---|
| AWS | A10, A100 | Enterprise |
| GCP | T4, A100, TPUs | Enterprise |
| Azure | A10, A100 | Enterprise |
| Lambda Labs | A100, H100 | Training |
| Vast.ai | Various | Budget |
Observability
Debugging and Monitoring
| Tool | Focus |
|---|
| LangSmith | LangChain debugging |
| Weights & Biases | ML experiments |
| Arize | Production monitoring |
| Helicone | LLM observability |
| Portkey | LLM gateway |
Open Source Models
Running Locally
| Tool | Purpose |
|---|
| Ollama | Easy local LLMs |
| llama.cpp | Efficient inference |
| vLLM | Production serving |
| text-generation-webui | GUI interface |
Best Open Models
| Model | Use Case |
|---|
| Llama 3.1 70B | General |
| Mistral 7B | Efficient |
| CodeLlama | Coding |
| Phi-3 | Mobile/edge |
Testing and Evaluation
Tools
| Tool | Focus |
|---|
| Promptfoo | Prompt testing |
| RAGAS | RAG evaluation |
| DeepEval | LLM unit testing |
| LangSmith | Trace-based eval |
Basic Evaluation Pattern
from promptfoo import evaluate
results = evaluate(
prompts=["Translate: {text}"],
providers=["openai:gpt-4o", "anthropic:claude-3"],
tests=[
{"vars": {"text": "Hello"}, "assert": {"type": "contains", "value": "Bonjour"}}
]
)
Best Practices
API Usage
| Practice | Description |
|---|
| Rate limiting | Handle 429 errors |
| Caching | Cache common responses |
| Fallbacks | Multiple providers |
| Cost tracking | Monitor usage |
| Error handling | Graceful degradation |
Security
| Practice | Implementation |
|---|
| API key security | Environment variables |
| Input validation | Sanitize user input |
| Output filtering | Check for harmful content |
| Rate limiting | Prevent abuse |
Performance
| Optimization | Impact |
|---|
| Streaming | Better UX |
| Batch requests | Higher throughput |
| Model selection | Cost/quality tradeoff |
| Caching | Reduce calls |
Building AI Features
Checklist
"The best AI features solve real problems, handle failure gracefully, and improve over time. Start simple, ship fast, and iterate based on real usage."
AI Education in India: From IITs to Skill Development Programs
India is ramping up AI education at all levels, from elite IIT programs to mass skill development initiatives, aiming to create a workforce ready for the AI economy.